Mensuration II (Important results)

The following results are very important to solve various mensuration problems.

1. The largest possible sphere that can be chiseled out from a cube of side "a" cm.

Diagonal of the sphere is a, so radius = a/2.

Remaining empty space in the cube = $a^3 - \frac{\pi a^3}{6}$

2. The largest possible cube that can be chiseled out from a source of radius "a" cm

Here OA = radius of the sphere. So diagonal of the sphere = 2a.

Therefore side of the square = $\frac{2a}{\sqrt{3}}$ [if side of the square is x cm, diagonal = $\sqrt{3}x$]

Remaining empty space in the sphere = $\frac{4}{3}\pi(a)^3 - (\frac{2a}{\sqrt{3}})^{-3} = \frac{4a^3}{3}\left[\pi - \frac{2\sqrt{3}}{3}\right]$

3. The largest possible sphere that can be chiselled out from a cylinder of radius 'a' cm and height 'h' cm. then

Case 1: for h>A

Radius of the sphere is equal to radius of the cylinder.

Case 2: a>h

Radius of the sphere = $\frac{h}{2}$

4. The largest possible sphere that can be inscribed in a cone of racins 'a' cm and slant height equal to the

diameter of the base (L = 2a)

The radius of the sphere = $\frac{a}{\sqrt{3}}$

5. The largest possible cube that can be chiseled out from a hemisphere of radius 'a' cm.

The edge of the cube = $a\sqrt{\frac{2}{3}}$

6. The largest square that can be inscribed in a right angled triangle ABC when one of its vertices coincide with the vertex of right of the triangle.

Side of the square = $\frac{ab}{a+b}$ and area of the square = $(\frac{ab}{a+b})$

7. The largest square that can be inscribed in a right angled triangle ABC when one of its vertices lies on the hypotenuse of the triangle

Side of the square = $\frac{abc}{a^2 + b^2 + ab}$ Area of the square = $(\frac{abc}{a^2 + b^2 + ab})$

8. The largest square that can be inscribed in a semi circle of radius 'r' units

Area of the square = $\frac{3}{5}$ r²

9. The largest cube that can be chiseled out from a cone of height 'h' cm and radius of 'r' cm

Square side =
$$\frac{\sqrt{2} \cdot h \cdot r}{h + \sqrt{2} \cdot r}$$

10. The largest square that can be inscribed in a quadrant of radius 'r' cm.

Side of the square = $\frac{r}{\sqrt{2}}$, and area of the square = $\frac{r^2}{2}$

11. The largest circle that can be inscribed in the semi circle of radius 'r' cm is

Inscribed circle area = $\frac{\pi r^2}{4}$

(Rememeber: Inscribed circle area is half of the semi circle area)

12. The largest circle that can be inscribed in a quadrant of radius 'r' cm is

Area of the circle =
$$\frac{\pi r^2}{3 + 2\sqrt{2}}$$

- 13. The ratio of the volumes of the cylinder and the largest cube chiseled out from it are in the ratio = 11:7 (here cube side is equal to height of the cylinder)
- 14. The ratio of the volumes of the cylinder and the largest cone chisched out from it are in the ratio : 3:1 (here cone and cylinder have same base radius and heights)